[Acpc-l] Vortrag: Prof. U. Langer, 12.03.2001

AURORA Project AURORA Project <aurora@par.univie.ac.at>
Mon, 26 Feb 2001 10:10:33 +0100 (MET)


--Skulk_of_Foxes_864_000
Content-Type: TEXT/plain; charset=us-ascii
Content-MD5: Zctz7HL9tD0QaTzzKKJzhA==


              UNIVERSITAET WIEN INSTITUT FUER SOFTWAREWISSENSCHAFT
                                    gemeinsam mit
               FWF-Projekt Spezialforschungsbereich F011 "AURORA"

       
-----  EINLADUNG ZU EINEM VORTRAG IM RAHMEN DES AURORA-KOLLOQUIUMS -----
       
                  ++ Applications of Multigrad Methods ++
               ++ for 3D Magneto-Mechanical Field Problems ++
   

                               Ulrich Langer,
		        Johannes Kepler University,
		        ulanger@numa.uni-linz.ac.at
            
	         
	         ZEIT:  Montag, 12.03.2001, 17.00 Uhr s.t.  
	           ORT:  Institut fuer Softwarewissenschaft
	              1090 Wien, Liechtensteinstrasse 22, 
	                      Seminarraum, Mezzanin
	                      
	                       
The transient behaviour of some magneto-mechanical system can be completely
described by Maxwell's and Lam's partial differential equations (PDEs) with
appropriate  coupling terms reflecting the interactions of these fields and
with the  corresponding  boundary and initial  conditions.  Neglecting  the
displacement currents and introducing the vector potential for the magnetic
field, we arrive at a system of  parabolic  PDEs for the  vector  potential
coupled with the hyperpolic PDEs for the  displacements.  In the stationary
case, we have to deal with two coupled  systems of elliptic  PDEs.  Usually
the  computational  domain,  the finite  element  discretization,  the time
integration,  and the solver are different for the magnetic and  mechanical
parts.  For instance, the vector potential is approximated by edge elements
whereas the finite element  discretization of the displacements is based on
nodal elements on different  meshes.  The most time consuming moduls in the
solution  procedure  are  the  solvers  for  both  the  magnetical  and the
mechanical  finite  element  equations  arizing  in each  step of the  time
integration  procedure.  We present  geometrical  and  algebraic  multigrid
solvers   that  are   different   for   both   parts.  Already   in   their
non-parallelized versions, these multigrid solvers enable us to solve quite
efficiently   not  only  academic  test   problems,   but  also   technical
magneto-mechanical  systems of high complexity.  The parallelization of the
magnetic  multigrid methods (Maxwell  solvers) as well as of the mechanical
multigrid  methods (Lam's solvers) is based on a unified data  distribution
concept  borrowed  from  the  domain  decomposition  methods.  

The  results presented in the talk have been  obtained  mainly in the projekt  
F1306 andpartly in the project F1301 of the special  research  programme  SFB 
013 on "Numerical  and Symbolic  Scientific  Computing"  supported by the 
Austrian Science Fund.  See also the SFB home page http://sfb013.uni-linz.ac.at





--Skulk_of_Foxes_864_000
Content-Type: APPLICATION/x-dvi; name="langer.dvi"; x-unix-mode=0644
Content-Transfer-Encoding: BASE64
Content-Description: langer.dvi
Content-MD5: AkKT8fU2UpnFtxoCw0DtUg==

9wIBg5LAHDsAAAAAA+gbIFRlWCBvdXRwdXQgMjAwMS4wMi4yNjowOTI5iwAA
AAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/////oAGz
bt2NoP5zkSOgAW5u3Y2g/rSRI42RefWz8zXC1k6gAAwAAAAMAAAABmNtYngx
MuBBcHBsaWNhdGlvbnOWBIAAb2aTTXVsdGlncmlkk01ldGhvkGAAZHOOnw4A
AI2RYdO/dG+WBIAAM0STTWFnbmV0by1NZWOQoABoYW5pY2Fsk0ZpZWxkk1By
b2JsZW1zjp8YYqWNjY2SAMj1ZfNIjC34FAAKAAAACgAAAAdjbWNzYzEw60hV
LpEDxxpMYW5nZXKOkgDFLkufAZmUiQAAZmUAN//mjo6fHVsrjZELyPPzB0vx
YHkACgAAAAoAAAAFY21yMTCyVGhllgUUVnRyYW5zaWVumrjjdJNikEcdZWhh
mHZpb3Vyk29mk3NvbWWTbWFnbmV0by1tZWOYaGFuaWNhbJNzeXN0ZW2TY2Fu
k2KaRx1lk2NvbXBsZXRlbHmTZGVzY3JpYphlZJNikLjjeY6kDAAAjZELyPNN
YXh3mrjjZWxsJ3OWA/xrYW5kk0xhbZgTkftHHGUnc5NwYXJ0aWFsk2RpC2Vy
ZW6YdGlhbJNlcXVhdGlvbnOTKFBERXMpk3dpdGiTYXBwcm9wcmlhdGWTY291
cGxpbmeTdGVybXOTcmUtjqGNkQvI8w1lY3RpbmeWAtJNdGhlk2lukLjjdGVy
YWN0aW9uc5NvZpN0aGVzZZMMZWxkc5NhbmSTd2l0aJN0aGWTY29ycmVzcJpH
HW9uZGluZ5NimG91bmRhcnmTYW5kk2luaXRpYWyTY29uZGl0aW9ucy6OoY2R
C8jzTmVnbGVjdGluZ5YDmcF0aGWTZGlzcGxhY2VtZW6auON0k2N1cnJlbph0
c5NhbmSTaW6YdHJvkEcdZHVjaW5nk3RoZZN2mGVjdG9yk3CQRx1vdGVumHRp
YWyTZm9yk3RoZZNtYWduZXRpY5MMZWxkLI6hjZELyPN3lbjjZZsEn/thcnJp
dpNlmGF0mGGYc3lzdGVtmG9mmHBhcmFikEcdb2xpY5hQREVzmGZvcph0aGWY
dpNlY3RvcphwkEcdb3RlbpN0aWFsmGNvdXBsZWSYd2l0aJh0aGWYaJN5cJVH
HWVycJNvbGljjqGNkQvI81BERXOWBB/vZm9yk3RoZZNkaXNwbGFjZW1lbpq4
43RzLpEG0ZVJbpN0aGWTc3RhdGlvbmFyeZNjYXNlLJEEUpV3mGWTaGGYdphl
k3Rvk2RlYWyTd2l0aJN0mHeYb5Njb3VwbGVkk3N5c3RlbXOOoY2RC8jzb2aW
BB+cZWxsaXB0aWOTUERFcy6RBtCdVXN1YWxseZN0aGWTY29tcHV0YXRpb25h
bJNkb21haW4smwRSLnRoZZMMbml0ZZNlbGVtZW6QuON0k2Rpc2NyZXRpemF0
aW9uLJh0aGWTdGltZY6hjZELyPNpbpq443RlZ3JhdGlvbiyRA4lMYW5klgN+
6HRoZZNzb2x2mGVyk2FyZZNkaQtlcmVumHSTZm9yk3RoZZNtYWduZXRpY5Nh
bmSTbWVjmGhhbmljYWyTcGFydHMukQTuf0aR/yqqb3KTaW5zdGFuY2UskQOJ
THRoZY6hjZELyPN2lbjjZWN0b3KbA0DNcJBHHW90ZW6TdGlhbJhpc5hhcHBy
b5N4aW1hdGVkmGKTeZhlZGdlmGVsZW1lbpN0c5h3aGVyZWFzmHRoZZgMbml0
ZZhlbGVtZW6TdJhkaXNjcmV0aXphdGlvbphvZph0aGWOoY2RC8jzZGlzcGxh
Y2VtZW6auON0c5YDhmFpc5NiYXNlZJNvbpNub5BHHWRhbJNlbGVtZW6YdHOT
b26TZGkLZXJlbph0k21lc2hlcy6RBQTsVGhlk21vc3STdGltZZNjb25zdW1p
bmeTbW+QRx1kdWxzjqGNkQvI82lulgLlMnRoZZNzb2x1dGlvbpNwcm+aRx1j
ZWR1cmWTYXJlk3RoZZNzb2x2kLjjZXJzk2ZvcpNimG90aJN0aGWTbWFnbmV0
aWNhbJNhbmSTdGhlk21lY5q442hhbmljYWyTDG5pdGWTZWxlbWVumHSOoY2R
C8jzZXF1YXRpb25zlgMGpWFyaXppbmeTaW6TZWFjmrjjaJNzdGVwk29mk3Ro
ZZN0aW1lk2lumHRlZ3JhdGlvbpNwcm+QRx1jZWR1cmUukQRXjVeR/yqqZZNw
cmVzZW6YdJNnZW9tZXRyaWNhbJNhbmSTYWxnZS2OoY2RC8jzYnJhaWOWAwxf
bZq443VsdGlncmlkk3NvbHaYZXJzk3RoYXSTYXJlk2RpC2VyZW6YdJNmb3KT
YpBHHW90aJNwYXJ0cy6RBFl1QWxyZWFkeZNpbpN0aGVpcpNub24tcGFyYWxs
ZWxpemVkk3aYZXJzaW9ucyyOoY2RC8jzdGhlc2WWBButbZq443VsdGlncmlk
k3NvbHaYZXJzk2VuYWJsZZN1c5N0b5Nzb2x2mGWTcXVpdGWTZQ5jaWVumHRs
eZNub3STb25seZNhY2FkZW1pY5N0ZXN0k3Byb2JsZW1zLJEETUNidXSOoY2R
C8jzYWxzb5YCz3R0ZWOauONobmljYWyTbWFnbmV0by1tZWOYaGFuaWNhbJNz
eXN0ZW1zk29mk2hpZ2iTY29tcGxleGl0mHmR/yqqLpEERSdUaGWTcGFyYWxs
ZWxpemF0aW9uk29mk3RoZZNtYWduZXRpY46hjZELyPNtmrjjdWx0aWdyaWSW
ApAdbWV0aG+QRx1kc5MoTWF4d5hlbGyTc29sdphlcnMpk2Fzk3eYZWxsk2Fz
k29mk3RoZZNtZWOYaGFuaWNhbJNtmHVsdGlncmlkk21ldGhvkEcdZHOTKExh
bZgTkftHHGWTc29sdphlcnMpjqGNkQvI82lzlgLitmJhc2Vkk29uk2GTdW5p
DGVkk2RhdGGTZGlzdHJpYnV0aW9uk2NvbmNlcHSTYppHHW9ycm+VuON3k2Vk
lgLitmZyb22TdGhlk2RvbWFpbpNkZWNvbXCYb3NpdGlvbpNtZXRob5hkcy6O
oY2RC8jzVGhllgLPQHJlc3VsdHOTcHJlc2VumrjjdGVkk2luk3RoZZN0YWxr
k2hhmHaYZZNikEcdZWVuk29idGFpbmVkk21haW5seZNpbpN0aGWTcHJvkQCO
OGpla3STRjEzMDaTYW5kk3BhcnRseZNpbpN0aGWOoY2RC8jzcHJvkQCOOGpl
Y3SWA1/6RjEzMDGTb2aTdGhlk3NwkEcdZWNpYWyTcmVzZWFyY5q442iTcHJv
Z3JhbW1lk1NGQpEDX/cwMTOTb26TXE51bWVyaWNhbJNhbmSTU3ltmGKQRx1v
bGljk1NjaWVumHRpDGOOoY2RC8jzQ29tcHV0aW5nIpYDVVVzdXBwkEcdb3J0
ZWSTYpC443mTdGhlk0F1c3RyaWFuk1NjaWVuY2WTRpH/Kqp1bmQujp8V8Q2N
kQvI8/NUjC34FAAJAAAACgAAAAdjbWNzYzEw61RKb2hhbm5lc5YDZmRLZXBs
ZXKTVW5pdmVyc2l0eSyTQWyR/2ZldGVuYmVykMzMZ2Vyk1N0ci6RBHMwNjks
k0EtNDA0MJNMaW56LJNBkLzMdXN0cmlhjqGNkQvI8/MdvGqRuQAJAAAACQAA
AAVjbXRpOchFLW1haWyRA048YWRkcpCHG2VzczqRBJ8a8xpvtIvHAAkAAAAJ
AAAABGNtcjnFdWxhbmdlckBukL45dW1hLnVuaS1saW56LmFjLmF0jo6OjPgA
AAAqAYOSwBw7AAAAAAPoAbNu3QG2k4gABQAB81SMLfgUAAkAAAAKAAAAB2Nt
Y3NjMTDzSIwt+BQACgAAAAoAAAAHY21jc2MxMPM1wtZOoAAMAAAADAAAAAZj
bWJ4MTLzHbxqkbkACQAAAAkAAAAFY210aTnzGm+0i8cACQAAAAkAAAAEY21y
OfMHS/FgeQAKAAAACgAAAAVjbXIxMPkAAAs+At/f39/f

--Skulk_of_Foxes_864_000--